skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Renneckar, Scott"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hydrogels showing strong adhesion to different substrates have garnered significant attention for engineering applications. However, the current development of such hydrogel-based adhesive is predominantly limited to synthetic polymers, owing to their exceptional performance and an extensive array of chemical options. To advance the development of sustainable hydrogel-based adhesives, we successfully create a highly robust all-cellulose hydrogel-based adhesive, which is composed of concentrated dialcohol cellulose nanorods (DCNRs) and relies on enhanced hydrogen bonding interactions between cellulose and the substrate. We implement a sequential oxidization-reduction process to achieve this high-performance all-cellulose hydrogel, which is realized by converting the two secondary hydroxyl groups within an anhydroglucose unit into two primary hydroxyl groups, while simultaneously linearizing the cellulose chains. Such structural and chemical modifications on cellulose chains increase out-of-plane interactions between the DCNRs hydrogel and substrate, as simulations indicate. Additionally, these modifications enhance the flexibility of the cellulose chains, which would otherwise be rigid. The resulting all-cellulose hydrogels demonstrate injectability and strong adhesion capability to a wide range of substrates, including wood, metal, glass, and plastic. This green and sustainable all-cellulose hydrogel-based adhesive holds great promise for future bio-based adhesive design. 
    more » « less